Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.26.559550

ABSTRACT

The rapid evolution of variants of SARS-CoV-2 highlights the need for new therapies to prevent disease spread. SARS-CoV-2, like SARS-CoV-1, uses the human cell surface protein angiotensin-converting enzyme 2 (ACE2) as its native receptor. Here, we design and characterize a mutant ACE2 that enables rapid affinity purification of a dimeric protein by altering the active site to prevent autoproteolytic digestion of a C-terminal His10 epitope tag. In cultured cells, mutant ACE2 competitively inhibits lentiviral vectors pseudotyped with spike from multiple SARS-CoV-2 variants, as well as infectious SARS-CoV-2. Moreover, the protein can be nebulized and retains virus-binding properties. We developed a system for delivery of aerosolized ACE2 to K18-hACE2 mice and demonstrate protection by our modified ACE2 when delivered as a prophylactic agent. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2 and other ACE2-dependent viruses.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.25.525551

ABSTRACT

LY6E is an antiviral protein that inhibits coronavirus entry. Its expression in immune cells allows mice to control murine coronavirus infection. However, it is not known which immune cell subsets mediate this control or whether LY6E protects mice from SARS-CoV-2. In this study, we used tissue-specific Cre recombinase expression to ablate Ly6e in distinct immune compartments or in all epiblast-derived cells, and bone marrow chimeras to target Ly6e in a subset of radioresistant cells. Mice lacking Ly6e in Lyz2-expressing cells and radioresistant Vav1 expressing cells were more susceptible to lethal murine coronavirus infection. Mice lacking Ly6e globally developed clinical disease when challenged with the Gamma (P.1) variant of SARS-CoV-2. By contrast, wildtype mice and mice lacking type I and type III interferon signaling had no clinical symptoms after SARS-CoV-2 infection. Transcriptomic profiling of lungs from SARS-CoV-2-infected wildtype and Ly6e knockout mice revealed a striking reduction of secretory cell-associated genes in infected knockout mice, including Muc5b, an airway mucin-encoding gene that may protect against SARS-CoV-2-inflicted respiratory disease. Collectively, our study reveals distinct cellular compartments in which Ly6e confers cell intrinsic antiviral effects, thereby conferring resistance to disease caused by murine coronavirus and SARS-CoV-2.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.24.22275411

ABSTRACT

Background: An in-silico screen was performed to identify FDA approved drugs that inhibit SARS-CoV-2 main protease (Mpro), followed by in vitro viral replication assays, and in vivo pharmacokinetic studies in mice. These studies identified atovaquone as a promising candidate for inhibiting viral replication. Methods: A 2-center, randomized, double-blind, placebo-controlled trial was performed among patients hospitalized with COVID-19 infection. Enrolled patients were randomized 2:1 to atovaquone 1500 mg BID versus matched placebo. Patients received standard of care treatment including remdesivir, dexamethasone, or convalescent plasma as deemed necessary by the treating team. Saliva was collected at baseline and twice per day for up to 10 days for RNA extraction for SARS-CoV-2 viral load measurement by quantitative reverse-transcriptase PCR. The primary outcome was the between group difference in log-transformed viral load (copies/mL) using a generalized linear mixed-effect models of repeated measures from all samples. Results: Of the 61 patients enrolled; 41 received atovaquone and 19 received placebo. Overall, the population was predominately male (63%) and Hispanic (70%), with a mean age of 51 years, enrolled a mean of 5 days from symptom onset. The log10 viral load was 5.25 copies/mL vs. 4.79 copies/mL at baseline in the atovaquone vs. placebo group. Change in viral load did not differ over time between the atovaquone plus standard of care arm versus the placebo plus standard of care arm. Pharmacokinetic (PK) studies of atovaquone plasma concentration demonstrated a wide variation in atovaquone levels, with an inverse correlation between BMI and atovaquone levels, (Rho -0.45, p=0.02). In post hoc analysis, an inverse correlation was observed between atovaquone levels and viral load (Rho -0.54, p= 0.005). Conclusion: In this prospective, randomized, placebo-controlled trial, atovaquone did not demonstrate evidence of enhanced SARS-CoV-2 viral clearance compared with placebo. However, based on the observed inverse correlation between atovaquone levels and viral load, additional PK-guided studies may be warranted to examine the antiviral effect of atovaquone in COVID-19 patients. clincialtrials.gov (NCT04456153).


Subject(s)
COVID-19
4.
chemrxiv; 2020.
Preprint in English | PREPRINT-CHEMRXIV | ID: ppzbmed-10.26434.chemrxiv.12003930.v4

ABSTRACT

The newly emerged coronavirus, SARS-CoV-2, and the resulting COVID-19 disease, has spread swiftly across the globe since its initial detection in December 2019. Given the heavy toll of this pandemic, therapeutic options for treatment are urgently needed. Here, we adopted a repositioning approach using in-silico molecular modeling to screen FDA-approved drugs with established safety profiles for potential inhibitory effects against SARS-CoV-2. We used structure-based drug design to screen more than 2000 FDA approved drugs against SARS-CoV-2 main protease enzyme (Mpro) substrate-binding pocket, focusing on two potential sites (central and terminal sites) to identify hits based on their binding energies, binding modes, interacting amino acids, and therapeutic indications. We additionally screened the top hits from both sites for potential covalent binding via nucleophilic thiol attack of Cys 145. High-scoring candidates were then screened for antiviral activity against infectious SARS-CoV-2 in a cell-based viral replication assay, and counterscreened for toxicity. Atovaquone, Mebendazole, and Ouabain exhibited antiviral efficacy with IC50s well within their respective therapeutic plasma concentrations (low nanomolar to low micromolar range), and limited toxic effects. Notably, all three were predicted in docking studies to covalently bind SARS-CoV-2 Mpro, underscoring the utility of this in-silico approach for identifying putative antivirals for repurposing. These results do not confirm efficacy in animal models or in humans, but rather serve as a starting point for testing the antiviral potential of select FDA-approved drugs, either individually or in combination.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.05.979260

ABSTRACT

Zoonotic coronaviruses (CoVs) are significant threats to global health, as exemplified by the recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Host immune responses to CoV are complex and regulated in part through antiviral interferons. However, the interferon-stimulated gene products that inhibit CoV are not well characterized2. Here, we show that interferon-inducible lymphocyte antigen 6 complex, locus E (LY6E) potently restricts cellular infection by multiple CoVs, including SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Mechanistic studies revealed that LY6E inhibits CoV entry into cells by interfering with spike protein-mediated membrane fusion. Importantly, mice lacking Ly6e in hematopoietic cells were highly susceptible to murine CoV infection. Exacerbated viral pathogenesis in Ly6e knockout mice was accompanied by loss of hepatic and splenic immune cells and reduction in global antiviral gene pathways. Accordingly, we found that Ly6e directly protects primary B cells and dendritic cells from murine CoV infection. Our results demonstrate that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis. These findings advance our understanding of immune-mediated control of CoV in vitro and in vivo, knowledge that could help inform strategies to combat infection by emerging CoV.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Infections
SELECTION OF CITATIONS
SEARCH DETAIL